
Function Reference for FX.php
This document is intended to demonstrate the functions in FX.php. Almost all of the functions within
FX can be called in any order. There are, however, some exceptions: 1) the declaration of an
instance of FX must come before the others; and 2) one of the query functions must be called very
last. A list of the functions follows with descriptions of each relevant parameter. Please note that in
the original release, the FX class was called FMData() instead.

Important: Whenever FX is used, you must call FX() and one of the query functions. Some of the
other functions are required as well, depending on the type of query you're trying to execute. Within
this document, the description of each of the functions in the 'Next Functions' Group indicates where
it is required and where it is optional.

Conventions used:
+ $ReturnedData is used to signify the array containing the data returned by a query. For examples of
the syntax used to populate $ReturnedData, see the 'Last Functions' portion of this document.
+ Lines where parameter descriptions begin are indicated by a leading '>> '.

___First Function to Call___________________

FX ($dataServer, $dataPort=591, $dataType='')

>> The first parameter, $dataServer, should be the IP address (I think a domain name would work,
too) of the machine where you have the FileMaker Pro Web Companion running.

>> $dataPort is an optional parameter specifying on which port FileMaker data is accessible.

In FileMaker 5 thru 6, this can be configured in FileMaker Unlimited (under the 'Edit' menu in most
versions or the 'FileMaker Pro' menu in Mac OS X) under:

Preferences->Application->Plug-Ins

Then select 'Web Companion' and click the 'Configure...' button. There will be a box where the Port
Number can be entered. This is set to port 80 by default, but it states in the FileMaker help (under
'Web Companion, Specifying a port number for web publishing'):

FileMaker, Inc. has registered port number 591 with the Internet Assigned Numbers Authority (IANA)
for use with FileMaker Pro Web Companion.

If neither of these ports works for you, you might also consider using one of the ports between
49152 and 65535. According to IANA, these ports are considered Dynamic and/or Private. That is
to say, they aren't registered to any specific application.

In the case of FileMaker 7 Server Advanced, FIleMaker data will be accessible on the same port on
which the associated web server is running. This will usually be port 80, or port 443 for SSL
connections.

>> The last parameter, $dataType, is new as of version 3.x of FX.php. This optional parameter is
used to specify what sort of database will be accessed. Please note that if you will always be
accessing the same type of data source, you can simply change this line in FX.php:

var $dataServerType = 'xxxx';

Where 'xxxx' is the parameter from the list below corresponding to your data source.

The possible values for this parameter (which must be entered exactly as they appear here) are:

FMPro5/6 - for FileMaker version 5 thru 6 databases.

FMPro7 - for FileMaker 7 data sources.

MySQL - if connecting to a MySQL data source.

Typically, you would call this function thus:

$InstanceName = new FX('127.0.0.1'); // if you are using port 591

or,

$portNumber = '49494'; // where the value is the port you want to use
$InstanceName = new FX('127.0.0.1', $portNumber);

or,

$InstanceName = new FX('127.0.0.1', 591, 'FMPro5/6'); // to connect to FileMaker 5 or 6

___Next Functions to Call___________________

The functions within this group can be called in any order relative to one another. Some of these
functions are optional, and some might be used multiple times in a particular query.

SetDBData ($database, $layout="", $groupSize=50, $responseLayout="")

SetDBData() is a required function except when the action called is FMDBNames(). When
performing an FMDBNames() action, the SetDBData() function should not be called. In any other
instance, if you fail to specify the data relating to where FX can find your data, only an error will be
returned.

>> The $database parameter is a required parameter for every action except FMDBNames(). It
should contain the name of the database to be accessed. The parameter can either be a variable,
as shown here, or the literal name of the database: e.g. 'Books.fp5'.

>> $layout is technically an optional parameter for FileMaker versions 5 thru 6, but is required for
most queries in version 7 (failure to specify a layout when connecting to a FileMaker 7 database will
result in an error. It indicates the name of the layout to access. It is optional in the older versions of
FileMaker because by default FileMaker 5 and 6 access an internal layout which contains every
field. However, using the default layout will almost always result in reduced performance. On the
other hand, this parameter should not be passed, regardless of FileMaker version, when that action
to be called is FMLayoutNames(). The $layout parameter is also unnecessary for FMScriptNames(),
a new function in FX.php version 3.x specifically for FileMaker 7. For all other actions (e.g.
FMFind(), FMAdd(), etc.), I recommend that the developer create layouts which contain only those
fields necessary for a specific query (this is generally good practice, no matter how you access
FileMaker via the web.) This will result in a measurable improvement in the Web Companion's
performance.

>> The next parameter, $groupSize, is used to set how many records FX returns at once. As is
shown above, this is 50 by default. The special value 'All' may be used as well. The example below
sets the database, layout, and a group size of 10 records:

$returnCount = 10;
$InstanceName->SetDBData('MyDatabase', 'web_layout', $returnCount);

>> Finally, $responseLayout is a new parameter in version 3.x of FX.php which is specific to
version 7 of FileMaker. When accessing a FileMaker version 7 data source, it is possible to perform
the request on one layout, and then use a different layout to pull the returned data. Caution should
be used with this parameter since a change in layout in FileMaker 7 may correspond to a change in
context. In the following example, the query will be performed on a layout called "web_find", but the
data returned will use the layout "web_details":

$InstanceName->SetDBData('MyDatabase', 'web_find', 20, 'web_details');

SetDBPassword ($DBPassword, $DBUser='FX')

SetDBPassword() is an optional function unless your FileMaker database is password protected.
However, if your database is password protected, you need to provide a password that provides the
level of access a user would need to perform the actions your script will be asked to do. Should
you fail to specify a password for a database that is configured to require one, only an error will be
returned.

In the event that you're using FileMaker Pro's Web Security database for Web Companion security,
or you're accessing a secured FileMaker 7 database, you'll need to specify both a user name and
password. As is always the case with FileMaker Pro passwords, be sure that the user name and
password combination that you're using is allowed to perform the desired action. In the case of
version 7 of FileMaker, this includes insuring that the password used is allowed to access data via
the web.

>> $DBPassword is the only parameter needed by SetDBPassword() if you're using FileMaker
Pro's built in security. It can either be the literal password for the database, or a variable containing
the password. For an extra measure of security, it may be a good idea to keep the file containing
your password outside of your web folder and include it via PHP. A literal password would be set
like this:

$InstanceName->SetDBPassword('knock-knock');

>> $DBUser need only be passed if: 1) you're using FileMaker Pro's Web Security database for
Web Companion security (check your plug-in settings); or 2) you're accessing a secured FileMaker
7 database. Please note that because $DBUser is only needed for a specific type of FileMaker
authentication, it is always passed second when it is used. Usage and security concerns are
similar to those for $DBPassword. A literal user and password could be set like this:

$InstanceName->SetDBPassword('knock-knock', 'webuser');

SetDBUserPass ($DBUser, $DBPassword ='')

This function -- SetDBUserPass() -- is identical to the one above, but it may seem friendlier to users
of FileMaker 7 and SQL databases. The notes for SetDBPassword() should be consulted for details
about the use of this script. Notes about the minor differences related to the parameters follow:

 >> FileMaker 7 and SQL databases generally always operate with a username, even if there is no
password for a given user. For this reason, $DBUser is the only parameter required by
SetDBUserPass(). In contrast to the previous function, SetDBUserPass() expects $DBUser to be
the first parameter passed.

>> $DBPassword is passed to SetDBUserPass() second. This password is optional, and should
contain the password associated with the user specified via $DBUser (see above.)

SetDefaultOperator ($op)

By default, FX.php performs begins with searches when performing a find. If desired,
SetDefaultOperator() can be used to change this behavior -- if, for example, most of your queries
compare using equals.

>> $op is the only parameter taken by SetDefaultOperator(). Possible values for $op are covered in
detail in the $op parameter section of AddDBParam().

AddDBParam ($name, $value, $op="")

The AddDBParam function is not technically required (you won't see a query related error if you omit
it), but calls to FMFind(), FMDelete(), and FMEdit() won't do much without it. AddDBParam() is the
method by which query criteria are specified. It is common to use more than one instance of this
function in a query, especially when performing complex searches or updating an existing record.

>> The $name parameter is used to specify which data you wish to make a query against. Usually,
this will be a field name. The examples at the bottom of this function will be of this type. In such
cases, there are a few things to keep in mind:

- If the field is from a related database, you'll need to make sure that the relationship is appended to
the field name, e.g. relationship_name::field_name.

- When working with FileMaker versions 5 thru 6, the field specified must appear on the layout to be
used for the current query.

- For FileMaker 7, if the field specified doesn't occur on the table associated with the current layout,
the field name must be fully qualified. (e.g. tableName::fieldName(repetitionNumber).recordID)

Beyond the use of field names in AddDBParam(), there are a few special cases:

1) When performing an FMEdit() or FMDelete() query, you'll need some code similar to this:

$InstanceName->AddDBParam('-recid', $currentRecord);

Where $currentRecord is the FileMaker RecordID of the record you wish to update. The FileMaker
RecordID is part of the information returned by FX.php for each record in a found set. If an array
called $ReturnedData contains the data returned by FX.php, the keys in the $ReturnedData['data']
subarray contain both the RecordID and the ModifyID (the next exception that will be discussed)
separated by a period. Both IDs could be extracted from the current key like this:

$recordPointers = explode ('.', $key); // where $key is the current key from $ReturnedData['data']
$currentRecord = $recordPointers[0]; // here's the RecordID
$currentModified = $recordPointers[1]; // and here's the ModifyID

2) When performing an FMEdit() query, there might be cases that you want to ensure that the data
being submitted is indeed newer than what's in the database. This can be done by adding an
instance of AddDBParam() where $name is '-modid' (as mentioned in conjunction with -'recid'
above.) Like this:

$InstanceName->AddDBParam('-modid', $currentModified);

If the record in the database is more recent than the data upon which the current update is based,
$ReturnedData['errorCode'] will contain the value 306. This condition could be checked in this
manner:

if ($ReturnedData['errorCode'] == 306) {
 echo "Sorry the data submitted is older than the existing data.";
}

Complete documentation on the error codes that may be returned to FX by the Web Companion can
be downloaded from:

http://www.filemaker.com/downloads/pdf/xml_Appendix_C.pdf

3) Searches by default are logical 'and' searches. This means that if you pass in multiple
AddDBParam() statements, the resulting find will return only those records that match all of the
criteria. If you would instead like to perform a search that returns items that match any of the criteria
specified, you can set a logical 'or' search using the special '-lop' $name parameter:

$InstanceName->AddDBParam('-lop', 'or');

This special parameter only needs to be used when requesting a logical 'or' search. Logical 'and' is
always assumed otherwise (this makes sense if one considers the ways that logical 'or' and 'and'
searches are performed in FileMaker.)

4) There may be cases when you would like to perform a FileMaker script on the returned data set.
In such cases, use one of the '-script' $name parameters: '-script', '-script.prefind', or '-script.presort'.
When these parameters are used, the $value parameter should be the name of the FileMaker script
that you wish to be executed. Usage is fairly self-explanatory. When '-script' is used, the specified
FileMaker script will be executed after the current find and sort (if any) are performed. Using '-
script.prefind' causes the specified FileMaker script to execute before the current find and sort are
executed. The '-script.presort' $name parameter runs the specified FileMaker script after the
current find, but before the current sort is executed. Usage of these parameters would be similar to
the following examples:

$InstanceName->AddDBParam('-script', 'Relookup Addresses');
$InstanceName->AddDBParam('-script.prefind', 'Delete Expired Records');
$InstanceName->AddDBParam('-script.presort', 'Omit Dulicates');

>> $value contains the value that a query should locate within the field specified by $name. In the
case of an FMEdit() query, $value is used to hold the new values to be assigned to the fields in the
record specified with the '-recid' AddDBParam() statement, as described in the special cases above.
$value may also hold values corresponding to special cases as previously described.

Wild cards can be used in $value variables just like they can in FileMaker. If your wild cards seem
to be behaving strangely, try using PHP's urlencode() function on $value.

>> The third parameter in AddDBParam statements is $op. This parameter is optional and without
it, FileMaker's default 'begins with' search is performed. This parameter should not be used with the
special cases described above. $op is the operator that you wish to use to compare data at the field
level. A value for $op must be specified for each field that you wish to search in a manner other
than the default search. The possible values for $op are as follows (syntax is the same for all of
these; see the examples at the end of this section for an example):

'eq' - an 'equals' search.
'cn' - a 'contains' search.
'bw' - a 'begins with' search.
'ew' - an 'ends with' search.
'gt' - a 'greater than' search.
'gte' - a 'greater than or equal to' search.
'lt' - a 'less than' search.
'lte' - a 'less than or equal to' search.
'neq' - a 'not equal to' search.

For additional information related to FileMaker versions 5 thru 6, see page B-7 in the following
documentation from FileMaker:

http://www.filemaker.com/downloads/pdf/xml_Appendix_B.pdf

AddDBParam() could be used for a FMFind() query something like this:

$InstanceName->AddDBParam('FirstName', 'John');
$InstanceName->AddDBParam('LastName', 'Smith', 'eq');

On the other hand, the AddDBParam() statements for an FMEdit() query might look something like
the following:

$InstanceName->AddDBParam('-recid', $currentRecord);
$InstanceName->AddDBParam('FullName', $fullName);
$InstanceName->AddDBParam('Address', $address);

Please note that operators are not used for FMEdit() queries. Other than that (and the special '-
recid' parameter) AddDBParam() is used in the same manner in these examples. In either case,
variables or literal values can be used as the parameters.

AddSortParam ($field, $sortOrder="", $performOrder=0)

AddSortParam() is used to determine how FileMaker will sort the found records before returning the
data to FX. If functions in much the same way that Sort mode does in FileMaker Pro. This function is
optional with FMFind() and FMFindAll() actions and not relevant to any of the other final functions.

By default, the order in which multiple calls to AddSortParam() appear determines sort precedence
-- i.e. the results will first be sorted as specified in the first call, next by the second call, etc. The
behavior can be modified by using the $performOrder parameter (see below.)

>> $field specifies which field you wish to sort by. (Also, see above note about determining sort
order for FileMaker 7 databases.)

>> $sortOrder can contain one one of three values in FileMaker versions 5 through 6: Ascend,
Descend, or Custom. Custom sorting works the same way that it does in FileMaker (i.e. it uses the
value list formatted for the field specified on the current layout, as specified by SetDBData() in the
case of FX.) Syntax is as follows:

$InstanceName->AddSortParam('FirstName', 'Descend');

In FileMaker 7, the possible values are "ascend", "descend", or the name of a value list. In the event
that the name of a value list is passed, the returned data will be sorted based on that value list. The
following code would sort a field called "departmentName" based on a value list named
"department":

$InstanceName->AddSortParam('departmentName', 'department');

Regardless of data source, if AddSortParam() is called with only a $field parameter, an ascending
sort is assumed by default.

>> The $performOrder parameter can be used to place multiple sort requests in a specified order.
The value passed should be an integer greater than zero. For example, the following lines would
cause the returned data to be sorted first by a field called "lastName", and then by the field
"firstName" in ascending order:

$InstanceName->AddSortParam('firstName', 'ascend', 2);
$InstanceName->AddSortParam('lastName', 'ascend', 1);

FMSkipRecords ($skipSize)

This function is used to specify which record in the found set should be the first returned to FX.
FMSkipRecords() is optional.

>> $skipSize is the only parameter taken by FMSkipRecords(). By incrementing or decrementing
this value, records in the found set could be paged through in groups whose size was specified with
the $groupSize parameter in SetDBData(). For example:

$skipSize = $skipSize + $groupSize;
$InstanceName->FMSkipRecords($skipSize);

This would increment the number of records skipped by the value stored in $groupSize, and then
pass that parameter to FX so that $skipSize records will be skipped and the next $groupSize
number of records will be returned by the current query.

FMPostQuery ($isPostQuery = true)

This optional function is used to change FX's method of accessing FileMaker from an HTTP GET to
an HTTP POST. Generally, the two methods are interchangeable and FX uses POST by default,
because there is a limit to how long URLs can be. In the event that you wish to use GET requests
for one reason or another, FMPostQuery(false) can be called. Data should always be passed with
an HTTP POST when working with large amounts of data (a few hundred characters will cause an
HTTP GET problems.)

IMPORTANT: FMPostQuery() determines the method in which data is sent from your server to
FileMaker Pro's web companion, NOT the method by which data is sent from a user's browser to
your server (this is almost always done in the HTML <form> tag.)

>> $isPostQuery is set to true by default, so a call to FMPostQuery() to use GET instead of POST
will look like this:

$InstanceName-> FMPostQuery(false); // sets the current request to the Web Companion as a GET

FMUseCURL($useCURL = true)

This optional function is used to specify whether FX.php accesses FileMaker Pro using cURL or
sockets. FX.php has logic built in to detect cURL support, but there may be times when it may be
helpful to control this explicitly. By default, cURL is used by FX. Should you want or need to use
sockets instead, FMUseCURL(false) can be called.

IMPORTANT: Although cURL and sockets are generally interchangeable, if there are several calls
to FileMaker from a single page using sockets may result in the truncation of your data. For this
reason, it's usually best to allow FX.php to communicate with FileMaker via cURL (the default.)

>> $useCURL is set to true by default, so a call to FMUseCURL() to use sockets instead of cURL
will look like this:

$InstanceName-> FMUseCURL(false); // sends the current request to the FileMaker via sockets

___Last Functions to Call___________________

Only one of the following functions should be used for each query with FX.php. Calling one of these
functions is what actually causes the interaction with FileMaker Pro. The result of the current query
(if relevant) can then be stored in an array, if desired.

>> Whether data is returned by the function or not is determined by the first parameter that is
passed to each of these functions: $returnDataSet. Setting $returnDataSet to "true" will cause FX
to return the data that it received from FileMaker. In instances where data is only being sent to
FileMaker, $returnDataSet can be set to "false". (Not returning any data will increase performance
somewhat.)

>> In addition to determining whether data is returned, the extent of the returned data can be
determined by setting $returnData. This parameter can have two values: 'basic' or 'full'. Setting
$returnData to 'basic' will return all data from FileMaker except the contents of the records in the
current found set. Passing 'full' as a parameter will return the full set of data from FileMaker Pro.

FMDelete ($returnDataSet = false, $returnData = 'basic')

This function deletes the record specified by an AddDBParam() call using the special '-recid'
parameter documented above. Since a record is being deleted, data is not returned by default.
However, should you wish to access URL or error information, simply calling FMDelete() as shown
below will return basic query information (i.e. no record data.)

$InstanceName->AddDBParam('-recid', $currentRecord);
$InstanceName->FMDelete(true);

FMDup ($returnDataSet = true, $returnData = 'full')

FMDup is new to FX.php version 3.x and is only available for FileMaker 7 data sources. As might be
expected, this function duplicates a specified record. As is the case with FMDelete(), FMDup()
requires an AddDBParam() call that sets the special '-recid' parameter -- the record corresponding
to the RecordID passed, will be the one duplicated. Data is returned by default.

$InstanceName = new FX('127.0.0.1', 591, 'FMPro7');
$InstanceName->SetDBData('Customer_List.fp5', 'web_view');
$InstanceName->AddDBParam('-recid', $selectedRecord);
$ReturnedData = $InstanceName->FMDup(); // stores the new record in $ReturnedData

FMEdit ($returnDataSet = true, $returnData = 'full')

The function used to update the contents of a given record. FMEdit() requires an AddDBParam()
call that sets the special '-recid' parameter, as well. Data is returned by default for this function (after
all, you want to make sure the correct changes were made, right?)

$InstanceName = new FX('127.0.0.1');
$InstanceName->SetDBData('Customer_List.fp5', 'web_view');
$InstanceName->AddDBParam('-recid', $currentRecord);
$InstanceName->AddDBParam('FirstName', $firstName);
$InstanceName->AddDBParam('LastName', $lastName);
$InstanceName->AddDBParam('Title', $title);
$InstanceName->AddDBParam('Address', $address);
$InstanceName->AddDBParam('Office', 'Austin, TX');
$InstanceName->AddDBParam('CSR', $currentRep);
$ReturnedData = $InstanceName->FMEdit(); // stores the updated record in $ReturnedData

FMFind ($returnDataSet = true, $returnData = 'full')

Performs a find in FileMaker Pro as specified by the parameters previously passed. By default, this
function will return data -- a group of records who size was specified in SetDBData().

$InstanceName = new FX('127.0.0.1');
$InstanceName->SetDBData('Customer_List.fp5', 'web_view');
$InstanceName->AddDBParam('FirstName', $firstName);
$InstanceName->AddDBParam('LastName', $lastName, 'eq');
$InstanceName->AddDBParam('Office', 'Austin, TX');
$ReturnedData = $InstanceName->FMFind(); // stores the found set in $ReturnedData

FMFindAll ($returnDataSet = true, $returnData = 'full')

Equivalent to "Show All Records" in FileMaker Pro. Data is returned by default. Only the number of
records specified by the $groupSize parameter of SetDBData() will be returned. However, the
remainder of the records can be returned by using the FMSkipRecords() function as documented
above.

$InstanceName = new FX('127.0.0.1');
$InstanceName->SetDBData('CDList', 'web_view', 'All');
$ReturnedData = $InstanceName->FMFindAll(); // stores all records in $ReturnedData

FMFindAny ($returnDataSet = true, $returnData = 'full')

Returns a random record. By default data is returned.

$InstanceName = new FX('127.0.0.1');
$InstanceName->SetDBData('CDList', 'web_view');
$ReturnedData = $InstanceName->FMFindAny(); // stores a random record in $ReturnedData

FMNew ($returnDataSet = true, $returnData = 'full')

Creates a new record in FileMaker pro with fields populated with the values specified by instances
of the AddDBParam() function. By default, data is returned -- the record just created.

// Not a complete query, FX() and SetDBData() are missing...
$InstanceName->AddDBParam('FirstName', $firstName);
$InstanceName->AddDBParam('LastName', $lastName);
$InstanceName->AddDBParam('Office', 'Austin, TX');
$ReturnedData = $InstanceName->FMNew(); // stores the new record in $ReturnedData

FMView ($returnDataSet = true, $returnData = 'full')

This function is somewhat different from the others in this group in that it returns information about
the layout, not a certain set of records. Data is returned by default, and I can see little use for this
function if $returnDataSet is set to 'false'. If there are fields that are formatted as drop-down menus
on the current layout (as specified by SetDBData()), the following example will display a drop-
down on the resulting web page for each one on the specified layout in the database:

$InstanceName = new FX('127.0.0.1');
$InstanceName->SetDBData('CDList', 'web_view');
$ReturnedData = $InstanceName->FMView(); // stores layout information in $ReturnedData
foreach ($ReturnedData['valueLists'] as $key => $value) {

 foreach ($value as $key1 => $value1) {
 $valuelistData[$key] .= "\t<option value=\"$value1\">$value1</option>\n";
 }
 echo "<select name=\"$key\">\n";
 echo $valuelistData[$key];
 echo "</select>\n";
 echo "
\n";
}

FMDBNames ($returnDataSet = true, $returnData = 'full')

FMDBNames() is similar to FMView() in that it returns information about the FileMaker environment
on the current server, rather than a group of records. Unlike every other action function, the
SetDBData() function should not be called in conjunction with this function. When called,
FMDBNames() returns the names of all databases that are open and shared via the Web
Companion on the target machine. Data is returned by default. As above, setting $returnDataSet
to false would be of little practical use. A query to display the currently active databases available
via web companion might look like this:

$serverIPAddress = '127.0.0.1';
$InstanceName = new FX($serverIPAddress);
$ReturnedData = $InstanceName->FMDBNames(); // stores layout information in $ReturnedData
echo "Databases Open on $serverIPAddress
\n";
foreach ($ReturnedData['data'] as $value) {
 echo $value['DATABASE_NAME'][0] . "
\n";
}

FMLayoutNames ($returnDataSet = true, $returnData = 'full')

Like the two preceding functions, FMLayoutNames() returns information about the FileMaker
environment on the current server, rather than a group of records. Like them, data is returned by
default. And like them, setting $returnDataSet to false would be of little practical use. However,
unlike every other action function, the SetDBData() function should be called, but no layout should
be specified. FMLayoutNames() returns the names of all available layouts in the database
specified by the SetDBData() function. A query to display the available layouts in a database might
look like this:

$serverIPAddress = '127.0.0.1';
$currentDatabase = 'My_Database.fm5';
$InstanceName = new FX($serverIPAddress);
$InstanceName->SetDBData($currentDatabase);
$ReturnedData = $InstanceName->FMLayoutNames();
echo "Layouts in $currentDatabase
\n";
foreach ($ReturnedData['data'] as $value) {
 echo $value['LAYOUT_NAME'][0] . "
\n";
}

FMScriptNames ($returnDataSet = true, $returnData = 'full')

FMScriptNames() is another function which returns information about a database, rather than a
record set. As is the case with the other informational functions, data is returned by default, and
setting the function's $returnDataSet parameter to false would be of little practical use. This
function is like FMLayoutNames() in that no layout is specified. Rather, the function returns the
names of all available scripts for the specified database. An example query to display the available
scripts in a database follows:

$serverIPAddress = '127.0.0.1';
$currentDatabase = 'My_Database.fp7'; // FMScriptNames() is only available in FM7

$InstanceName = new FX($serverIPAddress, 80, 'FMPro7');
$InstanceName->SetDBData($currentDatabase);
$ReturnedData = $InstanceName->FMScriptNames();
echo "Scripts in $currentDatabase
\n";
foreach ($ReturnedData['data'] as $value) {
 echo $value['SCRIPT_NAME'][0] . "
\n";
}

___SQL Functions ___________________

The following functions are only used when using FX.php to connect to a SQL data source.

SetDataKey ($keyField, $modifyField = '', $separator = '.')

In FileMaker, each record has a built-in unique record identifier: RecordID; as well as a built-in
means of tracking modification order: ModID. Although many SQL databases have columns which
perform the same functions, the name of these columns will likely vary from one database to
another. SetDataKey() is intended to aid those who for whatever reason are moving an FX.php/
FileMaker solution to an FX.php/SQL solution achieve feature parity. (The key used for each
element in the data array from a FileMaker query is the RecordID, a period, and then the ModID.)

>> The $keyField parameter should contain the name of the field whose contents should be used
as they keys of the data array for the current query.

>> $modifyField is is an optional parameter which can be used to further identify each returned
row. The contents of this parameter should be the name of the field in the SQL database whose
contents should be used for this purpose. In the case of ModID, the FileMaker equivalent, a
common use would be to insure that a user did not overwrite a modification made by another active
user.

>> The final parameter, $separator, contains the character that should be used to separate the
data from the $keyField and the $modifyField. The default character is a period, as is used for the
data returned from FileMaker queries.

SQLFuzzyKeyLogicOn ($logicSwitch = false)

The SetDataKey() function, above, is used to specify which field's content should be used as the key
for the returned data array. SQLFuzzyKeyLogicOn() tells FX.php to make it's best guess as to the
field to use.

>> The only parameter of SQLFuzzyKeyLogicOn, $logicSwitch, is optional. If set to 'true', FX.php
will attempt to determine a field whose contents would best work as keys for the returned data array
(which has one element per row/record.)

___Additional Reading___________________

For more information about FX.php (including the latest version of this document):

http://www.iviking.org/

For information about getting started with PHP and FX.php you might try one of these books:

FX.php for FileMaker
http://www.fmwebschool.com/php.htm

Advanced FileMaker Pro 6 Web Development
http://www.amazon.com/exec/obidos/ASIN/1556228600/ivikingorg-20

Open Source Technology Expanding FileMaker
http://www.fmwebschool.com/opensource.htm

For more information on FileMaker and XML:

http://www.filemaker.com/downloads/pdf/xml_Chapter_7.pdf

For more information on the parameters accepted by FileMaker's Web Companion:

http://www.filemaker.com/downloads/pdf/xml_Appendix_B.pdf

For additional information on the error codes returned by FileMaker's Web Companion:

http://www.filemaker.com/downloads/pdf/xml_Appendix_C.pdf

For additional information about PHP, see the online manual at:

http://www.php.net/manual/en/

or look for books on PHP or FileMaker at your local bookseller.

